Nilai lim_(x→0)⁡ √(1-cos⁡ 4x^2)/(1-cos ⁡2x)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 0} \ \frac{\sqrt{1-\cos 4x^2}}{1-\cos 2x} = \cdots \)

  1. 1
  2. \( \sqrt{2} \)
  3. 2
  4. \( 2 \sqrt{2} \)
  5. 4

(UM UGM 2019)

Pembahasan:

\begin{aligned} \lim_{x \to 0} \ \frac{\sqrt{1-\cos 4x^2}}{1-\cos 2x} &= \lim_{x \to 0} \ \frac{\sqrt{1-\cos (2 \cdot 2x^2)}}{2\sin^2 x} \\[8pt] &= \lim_{x \to 0} \ \frac{\sqrt{2\sin^2 2x^2}}{2\sin^2 x} \\[8pt] &= \lim_{x \to 0} \ \frac{\sqrt{2} \ \sin 2x^2}{2\sin^2 x} \cdot \frac{x^2}{x^2} \\[8pt] &= \frac{\sqrt{2}}{2} \cdot \lim_{x \to 0} \ \frac{\sin 2x^2}{x^2} \cdot \lim_{x \to 0} \ \frac{x^2}{\sin^2 x} \\[8pt] &= \frac{\sqrt{2}}{2} \cdot 2 \cdot (1)^2 = \sqrt{2} \end{aligned}

Jawaban C.